Automatic baseline recognition for the correction of large sets of spectra using continuous wavelet transform and iterative fitting.

نویسندگان

  • Carlo G Bertinetto
  • Tapani Vuorinen
چکیده

A new algorithm for the automatic recognition of peak and baseline regions in spectra is presented. It is part of a study to devise a baseline correction method that is particularly suitable for the simple and fast treatment of large amounts of data of the same type, such as those coming from high-throughput instruments, images, process monitoring, etc. This algorithm is based on the continuous wavelet transform, and its parameters are automatically determined using the criteria of Shannon entropy and the statistical distribution of noise, requiring virtually no user intervention. It was assessed on simulated spectra with different noise levels and baseline amplitudes, successfully recognizing the baseline points in all cases but for a few extremely weak and noisy signals. It can be combined with various fitting methods for baseline estimation and correction. In this work, it was used together with an iterative polynomial fitting to successfully process a real Raman image of 40,000 pixels in about 2.5 h.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Reservoir Rock Characterization Using Wavelet Transform and Fractal Dimension

The aim of this study is to characterize and find the location of geological boundaries in different wells across a reservoir. Automatic detection of the geological boundaries can facilitate the matching of the stratigraphic layers in a reservoir and finally can lead to a correct reservoir rock characterization. Nowadays, the well-to-well correlation with the aim of finding the geological l...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

Evaluation of the Parameters Involved in the Iris Recognition System

Biometric recognition is an automatic identification method which is based on unique features or characteristics possessed by human beings and Iris recognition has proved itself as one of the most reliable biometric methods available owing to the accuracy provided by its unique epigenetic patterns. The main steps in any iris recognition system are image acquisition, iris segmentation, iris norm...

متن کامل

Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied spectroscopy

دوره 68 2  شماره 

صفحات  -

تاریخ انتشار 2014